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Abstract: Osteoarthritis (OA) has traditionally been known as a “wear and tear” disease, which is
mainly characterized by the degradation of articular cartilage and changes in the subchondral bone.
Despite the fact that OA is often thought of as a degenerative disease, the catabolic products of the
cartilage matrix often promote inflammation by activating immune cells. Current OA treatment
focuses on symptomatic treatment, with a primary focus on pain management, which does not
promote cartilage regeneration or attenuate joint inflammation. Since articular cartilage have no
ability to regenerate, thus regeneration of the tissue is one of the key targets of modern treatments
for OA. Cell-based therapies are among the new therapeutic strategies for OA. Mesenchymal stem
cells (MSCs) have been extensively researched as potential therapeutic agents in cell-based therapy
of OA due to their ability to differentiate into chondrocytes and their immunomodulatory prop-
erties that can facilitate cartilage repair and regeneration. In this review, we emphasized current
knowledge and future perspectives on the use of MSCs by targeting their regeneration potential and
immunomodulatory effects in the treatment of OA.

Keywords: cartilage regeneration; extracellular vesicles; inflammation; mesenchymal stem cell;
osteoarthritis

1. Introduction

Osteoarthritis (OA) is the most common form of degenerative joint disease, typified
by degeneration of cartilage and osseous overgrowth. The incidence of OA occurs in OA
affects 13.9% of individuals aged 25 and older, and 33.6% of those over the age of 65 [1].
According to the Arthritis Foundation, more than 30 million people in the United States
have OA, with the cases of knee OA are the most common [2]. The most common features
of OA include pain, tenderness, swelling, stiffness and locking around the affected joint [3].
The pathogenesis of OA dictates the predominance of destructive processes by altering the
tissue homeostasis of articular cartilage and subchondral bone.

OA is characterized by the breakdown of joint cartilage and subchondral bones.
Articular cartilage is an essential structural component of the human body. It is composed
of specialized cells known as chondrocytes. These chondrocytes generate a substantial
number of extracellular matrix (ECM), which is made up of collagen fibers, elastin fibers
and proteoglycan. Under physiological conditions, this matrix undergoes a constant
remodeling process where both degradative and synthetic enzymes known as matrix
metalloproteinases (MMPs) are tightly regulated [4]. These MMPs are released as inactive
proenzymes that require enzymatic cleavage to become activated. Once active, MMPs are
susceptible to the plasma-derived MMP inhibitor, alpha-2-macroglobulin, as well as tissue
inhibitors of MMPs (TIMPs), which are also produced by synovial cells and chondrocytes.
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In OA, the MMPs such as collagenases, stromelysins and gelatinases are overexpressed,
changing the balance in favor of net degradation and resulting in the loss of collagen and
proteoglycan from the matrix [5]. Subsequently, chondrocytes will proliferate and produced
increased amounts of proteoglycan and collagen molecules in response to the loss signals.
The presence of inflammatory cytokines, interleukin-1β (IL-1β) and tumor-necrosis factor-α
(TNF-α), drive the catabolic pathways and perpetuate the progression of OA [6]. However,
as the disease progresses, reparative measures are overwhelmed by progressive cartilage
breakdown. These lead to the disease progression where the cartilage becomes softer,
pitted and rough, and gradually disintegrate from the bone ends. The linings of joints
might become inflamed and thickened. In addition, muscles around the arthritic joint
become weaker and nerves become more sensitive. These changes might limit movement
and result in pain.

Current OA therapeutic approaches focus on pain relief and symptom control rather
than treating or slowing progression of the disease. Hence, there is an urgent need to
explore new therapeutic strategies for OA. Cell-based therapies which involve the delivery
of mesenchymal stem cells (MSCs) to the osteoarthritic joint have emerged as a promising
strategy to the current treatment by targeting their regeneration potential and immunomod-
ulatory effects. In this review, we discuss the current status of stem cell therapies, and also
recent advancements and future perspectives in MSC therapy for OA.

2. Inflammation in Osteoarthritis

OA is often regarded as a degenerative disease in contrast to rheumatoid arthri-
tis; however, recently the degenerative theory is no longer acceptable due to increasing
evidence suggesting that inflammation also plays important role in the initiation and
aggravation of OA. An early observation by Homandberg and colleagues [7] suggested
that ECM breakdown products enhanced inflammation and cartilage breakdown, as well
as pro-inflammatory mediators (Figure 1). Their observations supported a theory in which
damage resulting in ECM breakdown produces damage associated molecular patterns
(DAMPs) capable of triggering local inflammatory responses, resulting in increased chon-
drolysis and the release of more ECM breakdown products. There are numerous ECM
breakdown products that have been recognized as DAMPs mediate cartilage damage
which include fibronection [8], biglycan [9], tenascin C [10] and hyaluronic acid [11].

Several animal and human clinical studies have shown that chondrocytes, synovium
and other surrounding tissues can release pro-inflammatory mediators even in the absence
of overt inflammation, and various pathways culminate on aggrecanases and collagenases
activation in OA [12]. In OA, not only chondrocytes, but also the cells in the synovium and
other joint tissues, become activated due to exposure to aberrant environmental factors such
as high-magnitude mechanical stress, inflammatory cytokines as well as ECM proteins [13].
The activation of stress-and inflammation-induced signaling, transcriptional and post-
transcriptional activities can result in phenotypic shifts, apoptosis and abnormal expression
of inflammation-related genes, including catabolic genes [14]. These include nitric oxide
synthase (NOS)-2, cyclooxygenase (COX)-2 and several MMPs, including MMP-13, and a
disintegrin and metalloproteinase (ADAM) with thrombospondin-1 domains (ADAMTS)-4
and 5.

Following cartilage damage, the immune system is activated in the joint lining which
further triggers synovitis. However, as OA progresses, inflammation can occur surround
the damaged joint. This process triggers both innate and adaptive immune systems
activation exemplified by the presence of activated macrophages, elevated production
of proinflammatory cytokines, activation of complements as well as toll-like receptors
(TLRs) which play significant roles in the progression of the disease [15]. Previous study
has demonstrated that fibronectin fragments stimulated the release of proinflammatory
cytokines, including TNF-α and IL-1β, as well as MMP1 and MMP3 [7].
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Figure 1. Schematic representation of inflammation process in osteoarthritis. OA is defined by 
the progressive breakdown of articular cartilage and subchondral bone, and also low-grade in-
flammation. Following joint injury, cartilage tissue damage causes the production of damage-asso-
ciated molecular patterns (DAMPs), which include cartilage extracellular matrix (ECM) break-
down products and intracellular alarmins that signal pattern recognition receptors on synovial 
macrophages, fibroblasts, T cells, or chondrocytes to induce the local release of inflammatory me-
diators. These activated cells will produce inflammatory factors such as cytokines, chemokines, 
and catabolic enzymes, either directly or indirectly by inducing proteolytic enzymes which will 
accelerate cartilage destruction in the progressing osteoarthritis. 
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which play significant roles in the progression of the disease [15]. Previous study has 
demonstrated that fibronectin fragments stimulated the release of proinflammatory cyto-
kines, including TNF-α and IL-1β, as well as MMP1 and MMP3 [7].  

Cytokines that have been linked to the pathogenesis of OA include TNF-α, IL-1, IL-
2, IL-6, IL-15, IL-17 and IL-21 and several chemokines [16]. Among these cytokines, TNF-
α and IL-1β are the main cytokines involved in the pathogenesis of OA. IL-1β promotes 
catabolic effect and inflammatory reactions in the articular cartilage thus leads to the de-
struction of the cartilage. It was previously reported that patients with OA have an in-
creased level of IL-1β and TNF-α in the synovial fluid, cartilage, synovial membrane and 
the subchondral bone layer [17]. TNF-α and IL-1β are also responsible in the progression 
of OA by promoting the release of proinflammatory cytokines such as IL-6 [18], IL-17A 
[19] and chemokines such as IL-8 (CXXL8), vascular endothelial growth factor (VEGF) 
[19] and CC-chemokine ligand 5 (RANTES) [20]. Osteoarthritic chondrocytes treated 
with IL-1β demonstrated catabolic responses by promoting degeneration of cartilage 
through upregulation of MMPs [7]. In addition, TNF-α and IL-1β also promote the pro-
duction of ADAMTS metalloproteinases by the chondrocytes, which are responsible for 
the proteolysis of aggrecan molecules [21].  

IL-1β and TNF-α are also involved in the stimulation of various inflammatory medi-
ators implicated in OA. For instance, chondrocytes treated with TNF-α and IL-1β upreg-
ulated the expression of genes encoding inducible nitric oxide synthase (iNOS), COX-2 

Figure 1. Schematic representation of inflammation process in osteoarthritis. OA is defined by the
progressive breakdown of articular cartilage and subchondral bone, and also low-grade inflammation.
Following joint injury, cartilage tissue damage causes the production of damage-associated molecular
patterns (DAMPs), which include cartilage extracellular matrix (ECM) breakdown products and
intracellular alarmins that signal pattern recognition receptors on synovial macrophages, fibroblasts,
T cells, or chondrocytes to induce the local release of inflammatory mediators. These activated cells
will produce inflammatory factors such as cytokines, chemokines, and catabolic enzymes, either
directly or indirectly by inducing proteolytic enzymes which will accelerate cartilage destruction in
the progressing osteoarthritis.

Cytokines that have been linked to the pathogenesis of OA include TNF-α, IL-1, IL-2,
IL-6, IL-15, IL-17 and IL-21 and several chemokines [16]. Among these cytokines, TNF-α
and IL-1β are the main cytokines involved in the pathogenesis of OA. IL-1β promotes
catabolic effect and inflammatory reactions in the articular cartilage thus leads to the
destruction of the cartilage. It was previously reported that patients with OA have an
increased level of IL-1β and TNF-α in the synovial fluid, cartilage, synovial membrane and
the subchondral bone layer [17]. TNF-α and IL-1β are also responsible in the progression
of OA by promoting the release of proinflammatory cytokines such as IL-6 [18], IL-17A [19]
and chemokines such as IL-8 (CXXL8), vascular endothelial growth factor (VEGF) [19]
and CC-chemokine ligand 5 (RANTES) [20]. Osteoarthritic chondrocytes treated with
IL-1β demonstrated catabolic responses by promoting degeneration of cartilage through
upregulation of MMPs [7]. In addition, TNF-α and IL-1β also promote the production of
ADAMTS metalloproteinases by the chondrocytes, which are responsible for the proteolysis
of aggrecan molecules [21].

IL-1β and TNF-α are also involved in the stimulation of various inflammatory media-
tors implicated in OA. For instance, chondrocytes treated with TNF-α and IL-1β upregu-
lated the expression of genes encoding inducible nitric oxide synthase (iNOS), COX-2 and
microsomal prostaglandin E synthase 1, soluble phospholipase A2, and also stimulated
the release of nitric oxide (NO) and prostaglandin E2 (PGE2) [22]. NO and PGE2 stimulate
MMP activation and production, inhibit the synthesis of anabolic macromolecules such
as collagen and proteoglycan, inhibit the generation of IL-1Ra, and promote chondrocyte
apoptosis, all of which contribute to joint inflammation and degradation [23]. These cy-
tokines also stimulate the formation of reactive oxygen species (ROS), primarily NO and
the superoxide anion, which produce hydrogen peroxide, peroxynitrite, and hydroxyl
radicals, which cause cartilage degradation [24]. Furthermore, IL-1β and TNF-α suppress
the production of antioxidant enzymes that scavenge ROS, such as superoxide dismu-
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tase, catalase, and glutathione peroxidase, exacerbating the detrimental effects of ROS on
cartilage [25].

Similar to IL-1β and TNFα, IL-6 also regulates the catabolic responses by promoting
degeneration of cartilage via the production of MMPs as well as alters the production
of type II collagen [26]. IL-6 has an enormous effect on bone, by regulating the bone
resorption through the osteoclast activity. During OA progression, increased production of
IL-6 promotes osteoclastogenesis thus causes changes in the subchondral bone layer [27].
Limited studies described the involvement of IL-17A in OA. Askari [28] suggested the
regulatory role of IL-17A in the pathogenesis of OA as indicated by significant serum level
of IL-17A in OA patients compared to normal subjects [28]. Another study found IL-17
in the synovial fluid of patients with end-stage knee and hip OA, indicating that IL-17 is
involved in the pathogenesis of OA [29].

The involvement of TLRs in the pathogenesis of OA has also been reported. A previous
study has shown that ECM-derived DAMPS or alarmins act as ligands for TLRs that may
lead to the activation of catabolic events and downstream inflammatory responses in
articular cartilage [30]. In OA animal model, the level of TLR-2 and TLR-4 were elevated
in the cartilage of the lesion areas following activation by the ligands, peptidoglycan, and
lipopolysaccharide [11]. Increased activation of these TLRs leads to increased expression
of downstream inflammatory and catabolic genes, such as MMP-3, MMP-13 and NOS2,
via the cytosolic adaptor MyD88 and subsequent NF-κB signaling [11]. However, a study
in knock-out-TLR 1, 2, 4, 6 and MyD88 of OA mouse model with partial meniscectomy
showed no effect on OA severity [31].

3. Etiology

The etiology of OA is complex and to date is not fully understood. However, there are
few factors that may lead to the occurrence of OA. Age is considered the major independent
risk factor of OA. The mechanisms by which age impacts cartilage health are diverse and
complex, but they are most likely not just the result of cumulative “wear and tear” over
time. As aging progresses, there are changes that occur not only in the cartilage, but also
in other joint tissues including synovium, subchondral bone and muscle [32]. Thus, it is
becoming evident that ageing changes in the musculoskeletal system, in concert with other
factors, both intrinsic (e.g., alignment, over-loading) and extrinsic (e.g., genetics) to the
joint, contribute to the development of OA. [33].

Osteoarthritis of the knee is found to be more prevalence in women than in men due
to many factors including hormonal influences on cartilage metabolism, gender variation
in risk of injury and the differences in the biomechanical activities of the knee [34]. How-
ever, the finding showed no gender differences in hip and hand OA. Obesity is another
factor that is commonly recognized as a risk factor for the onset and progression of OA.
Obese individuals are highly prone to knee OA due to mechanical load on weight-bearing
joints [35] and also low-grade systemic inflammation through adipokines [36]. Obese
people had considerably more severe joint degeneration in the knees than normal weight
or underweight people, indicating that body weight impacts the severity of OA [37]. Two
prospective cohort studies indicated that obesity is highly linked to an increased risk of
knee replacement for OA [38]. A recent study showed a dose–response relationship be-
tween BMI and the clinical consequences of knee OA. The study demonstrated the pain
score, WOMAC function score, and physical activity levels differed significantly among
different BMI groups [39]. Moreover, a previous study has linked mechanical stress to
inflammation in OA due to the presence of chondrocyte surface mechanoreceptors [40].
Previous studies have shown that mechanical stretch enhanced the expression of IL-1β and
COX-2 and the amount of PGE2 synthesis [41] and MMP-2 expression in fibroblast-like
synoviocytes [42]. In pre-clinical studies, the progression of OA occurs in mouse obesity
model induced with high-fat diet caused elevation of IL-1β, IL-6, IL-8 and TNF-α [43].
These cytokines further stimulate the NF-κB signaling to trigger the articular chondrocyte
catabolic process through the upregulation of matrix metalloproteinases (MMPs) [16].
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Sports injury is common in active or young adults and knee injury enhances the risk
for OA. As the year progresses 41-51% of participants with a history of knee injury develops
radiographic signs of knee OA [44]. Most common sport injuries such as tear in cartilage
tissue and ligament and joint dislocation may lead to development of OA [45]. Previous
studies have reported that the chronic low-grade inflammation present in OA leads to
disease progression. In medical conditions such as in Diabetes mellitus, elevated level of IL-
1β and TNF-α leads to activation of NF-κB signaling in cells lining the synovial cavity and
chondrocytes [46]. Genetic predisposition is also relevant in OA. For instance, alteration
in TGF-β, Wnt/β-catenin, Indian Hedgehog, Notch and fibroblast growth factor (FGF)
pathways are involved in the progression and development of OA [47]. The contribution
of genetics in OA is estimated to be between 40% and 80%. It was found that a stronger
genetic contribution occurs in hip OA than knee OA [48].

4. Current Therapeutics for OA

The Osteoarthritis Research Society International (OARSI), the American College
of Rheumatology, and the American Academy of Orthopaedic Surgeons (AAOS) have
outlined three therapeutic approaches for OA: physical measures, pharmacological therapy
and surgery [49].

4.1. Physical Therapy

Physical therapy is related to daily activities. Living a healthier life with a balanced
food and physical activities could be an adjunct therapy for OA. Overweight or obese
people are at risk should benefit from weight loss as it can reduce the mechanical stress,
lessen joint pain, hence reduce OA risks [50]. Studies have reported that moderate exercise
can help strengthen muscles and delay the progression of OA [51]. Furthermore, exercise
therapy is particularly helpful in decreasing pain and improving joint mobility as reported
previously [52,53].

4.2. Drug Therapy

Pharmacologic treatment in OA is mainly aimed to alleviate pain. According to OARSI
and AAOS, acetaminophen is considered as the first-line drug therapy in mild-to-moderate
OA [54]. As shown in a Cochrane meta-analysis, taking acetaminophen reduced pain by
four points (on a 0 to 100 scale) compared to placebo and resulted in a 5% improvement
from baseline [55]. However, acetaminophen did not show significant immediate effect in
improving function and showed short-term improvement of function [56].

Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat moderate-
to-severe OA because they provide anti-inflammatory and analgesic properties. NSAIDs
function by inhibiting cyclooxygenase-2 (COX-2) and COX-1 enzymes, both of which are
involved in prostaglandin synthesis. There are several classes of NSAIDs which include
acetylsalicylic acid (aspirin), ibuprofen, naproxen and celecoxib. Eight randomized con-
trolled trials have reported that NSAIDs were superior to acetaminophen in terms of pain
alleviation [57]. In a systematic review, the efficacy and safety of acetaminophen and
NSAIDs (ibuprofen, diclofenac, arthrotec, celecoxib, naproxen, rofecoxib) for the treatment
of knee OA were evaluated [55]. Several studies have also suggested that NSAIDs were
better than acetaminophen for improving moderate-to-severe pain in people with knee OA.
However, the usage of NSAIDS was strictly restricted due to the occurrence of adverse
effects in certain people (~30%) [58].

Opioids such as oxycodone, morphine or atypical opioid tramadol were used for
the management of moderate-to-severe pain when NSAIDs and acetaminophen were
ineffective or contraindicated [59]. Between 2003 and 2009, there was an increase in opioid
use among OA patients, with 40% of knee OA patients receiving opioids in 2009 [60], while
a more recent research from 2007 to 2014 showed a decrease to 15.9%, with prescription
rates remaining relatively steady [61]. The use of opioids has been associated with various
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adverse effects, including nausea, dizziness, vomiting, constipation, tiredness, sleepiness
and headache which lead to restriction to usage despite of their benefits in pain relief [61,62].

4.3. Intra-Articular Injections

Intra-articular injections of glucocorticoids and hyaluronic acid is recommended by
OARSI as an alternative treatment for knee and hip OA [59]. The intra-articular injection is
mainly indicated for the management of patients with moderate-to-severe pain who poorly
responded to oral analgesic and anti-inflammatory drugs. Glucocorticoids administration
is normally aimed to alleviate pain and reduce inflammation [63]; however, when taken in
high doses over longer period of time will lead to detrimental effects [64]. While hyaluronic
acid supplementation functions to alleviate symptoms in OA joint [65] by improving the
synovial fluid function [66]. The efficacy and safety profiles of intra-articular glucocor-
ticoids and hyaluronic acid are considered comparable [67]. Intra-articular injection of
platelet rich plasma (PRP) is considered as a feasible and potential treatment of OA, as it
contains different types of tissue growth factors including transforming growth factor β
(TGF- β), platelet-derived growth factor, insulin-like growth factor-1 (IGF-1) and hepato-
cyte growth factor which have functions to promote chondrogenesis, increase angiogenesis
and epithelial cell, osteoblast and fibroblast proliferation [68–70] as well as promote the
production of hyaluronic acid and collagen [71]. Wang-Saegusa et al. [42] demonstrated
clinical improvement in OA treatment with no adverse effects after introducing 3 intra-
articular injections of autologous plasma PRP. Gormeli et al. have suggested multiple
injections of PRP for better clinical outcomes in early OA patients [72]. However, there is a
concern on the heterogeneity and lack of standardization in PRP preparation leading to
difficulty to identify the exact content that was being injected into the affected knee [73].

4.4. New OA Drugs

Demands for new drugs for the management of OA are high due to inefficiency and
multiple side effects from the current treatments. New drugs are different based upon
their therapeutic targets include chondrogenesis inducers, matrix degradation inhibitors,
apoptosis inhibitors, osteogenesis inhibitors and anti-inflammatory cytokines [74]. For
example, recombinant human BMP-7, also known as osteogenic protein-1 (OP-1), has been
introduced as the treatment for symptomatic knee OA [75]. The four different classes
of BMP-7 were injected intra-articularly into OA patients averaging 60 years old, with
treatments including 0.1 and 0.3 mg of BMP-7 demonstrating better improvement in
symptoms. BMP-7 was predominantly used for the management of bone non-unions
and spine fusion [76]. Two randomized placebo-controlled studies were conducted using
interleukin (IL)-1β inhibitor demonstrated that the treatment did not significantly improved
the OA symptoms compared to placebo [77,78].

4.5. Surgery

Surgery is recommended when both the pharmacology and non-pharmacology treat-
ments for OA fail to reduce pain and restore functions. Total joint replacement is also
recommended where the damaged joint is replaced with an artificial one [79]. Total joint
replacement is more common to replace knee or hip damage, but it is also performed for
hand joint such as carpometacarpal and interphalangeal joints [80]. However, an artificial
knee does not function like the original joint in that it does not permit natural rotation or
bending of the knee [81]. Another surgical procedure that can be carried out as a treat-
ment option for OA is microfracture. Microfracture is a marrow stimulation method that
permits contact between the joint space and subchondral bone marrow in order to release
mesenchymal stromal/stem cells (MSCs) from the marrow and generate repair tissue.
However, the repair tissue with microfracture usually degenerates over time especially in
fractures bigger than 2 cm2, resulting in the development of scar-like fibrous tissue or even
replacement with bone [82].
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5. Cell-Based Therapy

The cell-based therapy has been initiated for cartilage repair since 1980s. A technique
known as autologous chondrocyte implantation (ACI) was first described by Brittberg and
colleagues in 1994 [83]. This technique used a combination of surgical and cell culture
methods that require two stages of procedures [84]. Firstly, cartilage biopsy was obtained
from the healthy area of the articular cartilage in patient, followed by chondrocytes isolation
from the cartilage tissue using collagenase. The chondrocytes were then grown in a
monolayer culture before being transplanted over the cartilage defect in the second stage
procedure, either in suspension beneath a periosteal flap or synthetic membranes, or in
three-dimensional matrices [85].

Over the past two decades, three generations of ACI have been developed based on
the different types of implantation procedures. In the first generation, the periosteum
retrieved from the patient’s tibia were sutured over the defect. The cell suspension was
then introduced to the chamber. The disadvantage for the first generation is periosteal
delamination. However, in the second generation, it is purely based upon bilayer collagen
membrane. This is also sutured over the defect similar to the first generation to form a
chamber where the chondrocytes are introduced. More interestingly, in the third generation,
cultured chondrocytes are pre-seeded on a 3D-scaffold and then trimmed to fit the size
of the defect. Later, it is implanted into the defect area with fibrin glue. Therefore, third
generation ACI is called matrix-induced autologous chondrocyte implantation (MACI).
The advantages of MACI over conventional ACI is that it reduces the surgical time and the
fixation invasion, this in turn gives rise to a long-term cell maintenance.

Success stories of ACI have been reported widely. Brittberg [83] has reported symp-
tomatic relief and eliminated knee locking in 14 out of 16 patients at 2 years follow-up after
ACI. In a randomized controlled trial of 118 patients who had ACI or microfracture to treat
cartilage defects in the knee, they discovered that both treatments provided comparable
clinical results, but ACI was superior due to improved structural healing [86]. A recent
study [85] found that after 20 years of follow-up from 23 patients (24 knees) who received
the first-generation of ACI, 15 out of 24 knees showed significant improvement in all
clinical parameters except stiffness, and the patients were able to retain their native knees
with satisfactory results.

Despite the promising long-term clinical results, there are several limitations to the
use of ACI. One of the major limitations is the biological response of the periosteal flap
that causes detachment, delamination and late periosteal hypertrophy [83]. However, by
replacing the periosteal flap with collagen sheets or resorbable scaffolds, adverse events
and the aforementioned side effects in ACI have been effectively reduced [87]. Another
limitation related to ACI is the structural variability which is caused by disorganized
fibrocartilage [88]. The length of rehabilitation after ACI procedure can be a major limitation
as well in this treatment option in order to allow the repaired tissues to have adequate
time to remodel and mature. This can contribute to the delay of return to sports as
long as 18 months [89]. Furthermore, chondrocytes are difficult to grow in a monolayer
culture because they dedifferentiate into a fibroblast-like phenotype and lose their ability
to produce stable cartilage, which may lead to structural variability [90,91]. The instability
of the chondrocyte phenotype in the in vitro culture has encouraged more research on
identifying alternative cells for cartilage tissue engineering. The most promising cell source
that are commonly used in cartilage tissue engineering is mesenchymal stem cells.

6. Mesenchymal Stem Cells for Cartilage Tissue Engineering

MSCs are multipotent cells that can be differentiated into several types of cells in-
cluding chondrocytes, adipocytes, osteoblasts and myogenic and neuronal cells [92–96]
(Figure 2). MSCs can be isolated from various sources, primarily bone marrow, adipose tis-
sue, dental pulp, placenta and umbilical cord, as well as from the skeletal tissues. They are
characterized by their fibroblastic shape and specific marker expressions such as CD11b+,
CD14−, CD34−, CD45−, HLA-DR−, CD73+, CD90+ and CD105+ [97].
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Isolation of MSCs was first reported by Friedenstein and co-workers through their
early works in the 1960s and 1970s [98,99]. The first isolated MSCs were identified in bone
marrow, where the cells showed osteogenic potential and distinguished themselves from
the majority of hematopoietic cells by their rapid adherence to tissue culture vessels and
fibroblast-like appearance of their progeny in culture. In addition, in vivo transplantation
of the cells led to differentiation of the cells into multiple skeletal tissues (bone, cartilage,
adipose and fibrous tissues) confirming the multipotential of the cells [100]. Following the
report by Friedenstein and colleagues, Owen and Caplan had demonstrated the presence
of non-hematopoietic adult stem cell in the bone marrow in the late 1980s [101,102]. Later,
the term mesenchymal stem cell was introduced by Caplan in 1991 [102] through their
success in isolating human bone marrow-derived MSCs.

Unlike chondrocyte cells, MSCs are easy to expand in culture and exhibits chondro-
genic potential. The use of MSC-differentiated chondrocytes is a promising strategy for
cartilage regeneration. Chondrogenic differentiation from MSCs is well documented from
various sources and techniques. Differentiated cells display the important cartilage-specific
markers such as collagen type II, aggrecan and sulphated proteoglycans [103]. Similar to
other tissue engineering approach, chondrogenic differentiation could be achieved in the
presence of inducers, in this case the most established inducer is TGF-β [103], although
other inducers such as bone morphogenetic proteins (BMPs) [104] and IGF [105] were
also reported. MacKay et al. [106] used a combination of 100 nM dexamethasone and 10
ng/mL TGF-β3 and successfully induced chondrogenic differentiation of MSCs character-
ized by ECM with collagen type II, aggrecan and proteoglycan. Enhanced chondrogenic
potential of bone marrow MSCs in a presence of combination treatments TGF-β3/BMP-6
and TGF-β3/IGF-1 were also reported [105]. The importance of TGF-β signaling in chon-
drogenic development was confirmed in a study which showed adipose tissue-derived
MSCs that did not express TGF-receptor-1 protein had a lower chondrogenic capacity [107].
Progress in the chondrogenic differentiation potential of MSCs has led to the advance-
ment of cultivation of the cells. MSCs co-cultured with juvenile articular chondrocytes
(ACs) [108] with a presence of TGF-β3 in lower concentration [109,110] resulted in efficient
chondrogenic differentiation.

Given their highly chondrogenic potential in in vitro culture, MSC-based therapy is
among the promising therapeutic approaches to treat OA. Pre-clinical studies demonstrated
encouraging data on therapeutic potential of MSCs in OA animal models. Bone marrow
MSCs were implanted onto osteochondral defect which artificially made on 16 rabbits.
MSCs-implanted rabbits demonstrated improved histological scores as well as enhanced
production of collagen type II in the matrix [111]. Other pre-clinical studies showed the
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success of intra-articular injections of MSCs in goat [112] and porcine [113] models with
improved cartilage healing of chondral defects.

In 2002, Wakitani and colleagues transplanted bone marrow MSCs into the articular
cartilage defects in knees of 12 patients [114]. Even though there was no significant clinical
improvement after six months, arthroscopic and histological grading scores were better
than the control group. This study somehow highlighted the availability of autologous
MSC culture thus sparked for more research using the cells. Currently, 74 clinical studies
in various phases involving MSCs for OA are referenced at ClinicalTrials.gov. Centeno and
colleagues [115] described percutaneous injection of bone marrow MSC which resulted
in significant cartilage growth, decreased pain and increased joint mobility in the patient.
Later, they published a case study of 339 patients, showing that of those patients who
needed total knee replacement surgery (69% of the patient group), only 6.9% required
replacement surgery again following MSC treatment. The study reported that 60% of
patients showed >50% pain relief, while 40% reported >75% pain relief at 11 months [116].
In a randomized controlled trial, 30 patients with persistent knee pain who had not re-
sponded to conservative therapies improved in several functional indices and cartilage
quality after intra-articular injections of bone marrow MSCs [117]. In a Phase II clinical
trial of allogeneic MSCs, the safety and efficacy of intra-articular injection of Stempeucel®

in 60 patients with OA of knee were determined [118]. This study found that allogeneic
transplant of Stempeucel® was safe, with improved outcome in pain management scores
in the lowest dosage (25 million cells). Regardless of its safety and efficacy, intra-articular
injection of Stempeucel® especially in the highest dosage (150 million cells) exhibited
some adverse effects in the patients, but the adverse effects completely recovered upon
symptomatic treatment.

Another source of MSCs that is also utilized for OA treatment is adipose-derived
MSCs (ADSCs). As reviewed by Hurley [119], there were 16 studies that reported the use
of ADSCs for the treatment of OA with various approaches. ADSCs harvested from infrap-
atellar fat pad prepared in platelet-rich plasma (PRP) injected into the OA knee showed
improved mobility and function and reduced pain scores with no adverse effects [120]. At
two years follow-up, patients had significantly improved pain scores as well as cartilage
regeneration as confirmed by MRI [121]. In a study by Bui et al., non-expanded stromal
vascular fraction (SVF) isolated from the adipose tissue and prepared in PRP had been
delivered into 21 patients with grade II and III OA and reported significant improvements
in pain score as well as increased thickness of the cartilage layer [122]. Similar procedure
and outcome had been described by Bansal et al., which reported reduction in pain levels
after 3 months injection with SVF prepared in PRP [123]. More importantly, autologous
ADSCs transplantation reported in these studies offered minimal risk of side effects without
graft rejection or tumorigenesis in the recipients, thus provide promising approach for
OA treatment.

MSC-derived extracellular vesicles (EVs) are a diverse population of heterogeneous
membranous vesicles and enriched in many bioactive molecules such as lipids, proteins,
mRNAs, transfer RNA (tRNA), long non-coding RNAs (lncRNAs), microRNAs (miRNAs)
and mitochondrial DNA (mtDNA) [124]. These molecules establish an EVs-mediated
transport system which important in intercellular communication to regulate a wide
range of physiological and pathological processes and pathways [125]. MSC-derived EVs
have been widely documented to play important roles in the regulation of numerous
cell activities such as cell proliferation, differentiation, migration and extracellular matrix
synthesis [126–128]. When MSCs produce EVs, they encapsulate nucleic acids, proteins,
and lipids from donor cells and transfer them to recipient cells such as resting stem cells in
the stem cell niche or injured cells in the traumatic microenvironment [129,130]. These EVs-
cell communications will stimulate regeneration by activating resting stem cells or restoring
the functionality of the injured cells. EVs that have been shed by MSCs exhibit similar
properties such as functional tissue repair and regeneration as their cells of origin and
some studies reported added beneficial effects of MSC-derived EVs [131,132]. Moreover,
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several reports have demonstrated that MSC-derived EVs showed promising findings on
cartilage repair and regeneration by regulating immunomodulatory activity, promoting
regenerative capacities, diminishing apoptosis, and increasing proliferation [54,74,133,134].

Exosome derived from human embryonic stem cell-induced MSCs (ESC-MSCs) exhib-
ited remarkable cartilage regeneration in osteochondral defects rat which characterized
by complete restoration of hyaline cartilage [74]. Another study reported by Wang et al.
also demonstrated that exosome derived from ESC-MSCs alleviated cartilage destruc-
tion and matrix degradation in the destabilization of the medial meniscus (DMM) model
by increasing collagen type II (ColII) and aggrecan expressions but reducing ADMTS5
expression as well as improved the maximal and total OARSI scores which resulted in
milder OA pathology [135]. Similar findings were demonstrated by Cosenza et al. in their
in vitro and in vivo models [136]. Exosomes and microparticles isolated from BM-MSC
increased anabolic cartilage markers (collagen type II, aggrecan) expression in OA-like
chondrocytes in a dose-dependent manner, inhibited catabolic (MMP-13, ADAMTS5) and
inflammatory (iNOS) markers, and decreased articular cartilage damage and subchondral
bone degradation. Furthermore, EVs isolated from human adipose-derived MSC increased
the proliferation and migration of human OA chondrocytes in vitro and decreased the
progression of OA and protected cartilage from degeneration in both the monosodium
iodoacetate (MIA) rat and the surgical destabilization of the medial meniscus (DMM)
mouse models [133]. Another recent study found that exosomes derived from 3D culture
of umbilical MSCs had better chondroprotective effects than exosomes derived from 2D
culture systems, significantly stimulating chondrocyte proliferation, migration, and matrix
synthesis, as well as improving gross appearance and attenuating cartilage defect in the
animal model [137]. To date, no clinical trial has been conducted using MSC-derived EVs
on osteoarthritis.

7. MSCs for the Management of Inflammation in OA

Besides having excellent properties for regeneration of tissues, the immunomodulatory
properties of MSCs is also one of their superior characteristics. This makes MSCs as a
promising cell source to repair the damage of cartilage tissue and at the same time provide
immunomodulatory effect to reduce inflammation in OA. MSCs have been extensively
studied for their roles in inflammation. MSCs response to inflammation by homing to the
damaged tissues, regulating immune and inflammatory responses at the inflamed areas,
thus facilitating repair of the damaged tissues (Figure 3).

In general, MSCs have the capacity to modulate both innate and adaptive immune
responses. MSCs have been reported to modulate cytokine production by the dendritic
cell and Th1/Th2 cells [138], block maturation and activation of antigen presenting cell
(APC) [139], as well as regulate the production of CD4+CD25+regulatory cells [140].
MSCs are also prominent for their immunosuppressive effects through the inhibition
of T-lymphocyte activation and proliferation as well as modulating the expression of
pro-inflammatory cytokines and chemokines [141,142]. In addition, immunomodulation
by MSCs is reported to be mediated via both direct cell to cell contact and also through
secretion of soluble factors such as PGE2, indoleamine 2,3-dioxygenase (IDO) and NO [143].
These aforementioned mechanisms could contribute to resolution of inflammation in OA.
However, it is still unclear how MSCs facilitate tissue regeneration and inflammation
process. Many studies have shown that MSCs’ paracrine activity may play some role in
modifying the milieu of the injured tissue, resulting in more favorable circumstances for
tissue regeneration [67]. MSCs secrete cytokines to reduce inflammation in surrounding
tissues and initiate cartilage repair, which is followed by chondrogenic proliferation and
the secretion of ECM proteases and growth factors such as TGF-β IGF-1 and FGF [144].
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stem cells (MSCs) therapy for cartilage repair and regeneration. MSCs possess anti-inflammatory
and immunomodulatory properties which could reduce inflammation in the joint. MSCs may also
assist in the healing process by differentiating into chondrocytes or promoting the proliferation and
differentiation of the remaining healthy chondroprogenitors into mature chondrocytes, or both. By
releasing trophic factors and cell-to-cell interactions, MSCs may enhance cartilage regeneration and
reduce synovial inflammation in the osteoarthritic joint.

Intra-articular administration of MSCs into arthritic shoulder of the rat model in-
dicated downregulation of ADAMTS5 expression in the joint cartilage, but increased
expression of TNF-α stimulated gene/protein 6 (TSG-6) and inhibited the expression of
anti-calcitonin gene related peptide (CGRP) indicating suppression of the central sensi-
tization of pain [145]. Another study using intra-articular administration of umbilical
cord-derived MSCs (UC-MSCs) indicated anti-inflammatory and anti-catabolic effects of
UC-MSCs as demonstrated by decreased expression of the pro-inflammatory cytokines
and MMPs in the synoviocytes of the rabbit model [146].

Many in vitro and in vivo investigations have shown that MSC-derived EVs have sig-
nificant anti-inflammatory and regenerative effects in OA models. In an experimental study
by Vonk et al., EV isolated from human bone marrow MSC altered the TNF-α-mediated
upregulation of COX2 and pro-inflammatory interleukins, i.e., IL-1α, IL-1β, IL-6, IL-8 and
IL-17 when co-cultured with TNF-α-stimulated OA chondrocyte [147]. EVs derived from
human AD-MSCs demonstrated chondroprotective effects by decreasing the release of
inflammatory mediators (e.g., TNF-, IL-6, PGE2 and NO) and MMP activity, while increas-
ing the production of the anti-inflammatory cytokine IL-10. In a recent study, exosomes
from embryonic MSCs reduced inflammatory response, enhanced cartilage repair and
subchondral bone healing, reversed IL-1-mediated inhibition of sulfated glycosaminogly-
can synthesis, and decreased IL-1-induced production of nitric oxide and MMP-13 via
adenosine-mediated activation of AKT, ERK and AMPK pathways in an OA model of
the temporomandibular joint of immunocompetent rats [54]. The immunomodulatory
properties of MSCs and MSC-derived EVs may help decrease inflammation and prevent
the progression of OA, making them potential therapeutic sources for OA.

8. Conclusions and Future Perspective

OA is the most common joint disorder worldwide especially among the elderly.
However, OA remains irreversible as there is no effective treatment to cure it. When



Biomedicines 2021, 9, 785 12 of 18

OA becomes severe, the only option for therapy, other than pain medication, is joint
replacement. With current advancement in implants, although joint replacement is an
effective therapy for symptomatic end-stage osteoarthritis, outcomes can be poor. The
advancements in cell-based therapy offer interesting approaches for the treatment of
OA. ACI has been successfully clinically applied in OA patients, however there are a
number of issues and concerns surrounding this therapeutic approach as mentioned
above. Due to these issues, MSC-based therapy is a promising therapeutic strategy to
overcome the difficulty of treating OA. MSCs have chondrogenic properties and exhibit
immunomodulatory activity that can help to minimize inflammation in OA. In this review,
we described the pre-clinical and clinical studies using different sources of MSC with
various approaches. In addition, other approaches using the MSC-based EV in the treatment
of OA and their immunomodulatory effects are also described in this review. Despite
the fact that MSCs are showing promising results in OA patients, however there are
several factors to consider to further improve the treatment and management of the stem
cell isolation. The mechanism of action of the stem cell, as well as its chondrogenic
potential and immunomodulatory effects in the OA model, must be thoroughly investigated
before a new treatment strategy can be implemented. Proper isolation, delivery and
management of the stem cells isolated from the patient must be carefully evaluated to
avoid immunological rejection and to make sure optimal number of the MSC is obtained.
Recently, MSC-based EV offers promising therapeutic potential and immunomodulatory
capacity which warrants further investigation. Furthermore, innovative methods using
MSC and biomaterial construct for cartilage tissue engineering must be investigated to
improve the chondrogenic potential and immunomodulatory properties of the system for
OA treatment.
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